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P R E F A C E

This textbook is an expanded version ofElementary Linear Algebra, eleventh edition, by
Howard Anton. The first nine chapters of this book are identical to the first nine chapters
of that text; the tenth chapter consists of twenty applications of linear algebra drawn
from business, economics, engineering, physics, computer science, approximation theory,
ecology, demography, and genetics. The applications are largely independent of each
other, and each includes a list of mathematical prerequisites. Thus, each instructor has
the flexibility to choose those applications that are suitable for his or her students and to
incorporate each application anywhere in the course after the mathematical prerequisites
have been satisfied. Chapters 1–9 include simpler treatments of some of the applications
covered in more depth in Chapter 10.

This edition gives an introductory treatment of linear algebra that is suitable for a
first undergraduate course. Its aim is to present the fundamentals of linear algebra in the
clearest possible way—sound pedagogy is the main consideration. Although calculus
is not a prerequisite, there is some optional material that is clearly marked for students
with a calculus background. If desired, that material can be omitted without loss of
continuity.

Technology is not required to use this text, but for instructors who would like to
use MATLAB, Mathematica, Maple, or calculators with linear algebra capabilities, we
have posted some supporting material that can be accessed at either of the following
companion websites:

www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in
This Edition

Many parts of the text have been revised based on an extensive set of reviews. Here are
the primary changes:
• Earlier Linear Transformations Linear transformations are introduced earlier (starting

in Section 1.8). Many exercise sets, as well as parts of Chapters 4 and 8, have been
revised in keeping with the earlier introduction of linear transformations.

• New Exercises Hundreds of new exercises of all types have been added throughout
the text.

• Technology Exercises requiring technology such as MATLAB, Mathematica, or Maple
have been added and supporting data sets have been posted on the companion websites
for this text. The use of technology is not essential, and these exercises can be omitted
without affecting the flow of the text.

• Exercise Sets Reorganized Many multiple-part exercises have been subdivided to create
a better balance between odd and even exercise types. To simplify the instructor’s task
of creating assignments, exercise sets have been arranged in clearly defined categories.

• Reorganization In addition to the earlier introduction of linear transformations, the
old Section 4.12 on Dynamical Systems and Markov Chains has been moved to Chap-
ter 5 in order to incorporate material on eigenvalues and eigenvectors.

• Rewriting Section 9.3 on Internet Search Engines from the previous edition has been
rewritten to reflect more accurately how the Google PageRank algorithm works in
practice. That section is now Section 10.20 of the applications version of this text.

• Appendix A Rewritten The appendix on reading and writing proofs has been expanded
and revised to better support courses that focus on proving theorems.

• Web Materials Supplementary web materials now include various applications mod-
ules, three modules on linear programming, and an alternative presentation of deter-
minants based on permutations.

• Applications Chapter Section 10.2 of the previous edition has been moved to the
websites that accompany this text, so it is now part of a three-module set on Linear

www.wiley.com/college/anton
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Programming. A new section on Internet search engines has been added that explains
the PageRank algorithm used by Google.

Hallmark Features • Relationships Among Concepts One of our main pedagogical goals is to convey to the
student that linear algebra is a cohesive subject and not simply a collection of isolated
definitions and techniques. One way in which we do this is by using a crescendo of
Equivalent Statements theorems that continually revisit relationships among systems
of equations, matrices, determinants, vectors, linear transformations, and eigenvalues.
To get a general sense of how we use this technique see Theorems 1.5.3, 1.6.4, 2.3.8,
4.8.8, and then Theorem 5.1.5, for example.

• Smooth Transition to Abstraction Because the transition from Rn to general vector
spaces is difficult for many students, considerable effort is devoted to explaining the
purpose of abstraction and helping the student to “visualize” abstract ideas by drawing
analogies to familiar geometric ideas.

• Mathematical Precision When reasonable, we try to be mathematically precise. In
keeping with the level of student audience, proofs are presented in a patient style that
is tailored for beginners.

• Suitability for a Diverse Audience This text is designed to serve the needs of students
in engineering, computer science, biology, physics, business, and economics as well as
those majoring in mathematics.

• Historical Notes To give the students a sense of mathematical history and to convey
that real people created the mathematical theorems and equations they are studying, we
have included numerous Historical Notes that put the topic being studied in historical
perspective.

About the Exercises • Graded Exercise Sets Each exercise set in the first nine chapters begins with routine
drill problems and progresses to problems with more substance. These are followed
by three categories of exercises, the first focusing on proofs, the second on true/false
exercises, and the third on problems requiring technology. This compartmentalization
is designed to simplify the instructor’s task of selecting exercises for homework.

• Proof Exercises Linear algebra courses vary widely in their emphasis on proofs, so
exercises involving proofs have been grouped and compartmentalized for easy identifi-
cation. Appendix A has been rewritten to provide students more guidance on proving
theorems.

• True/False Exercises The True/False exercises are designed to check conceptual un-
derstanding and logical reasoning. To avoid pure guesswork, the students are required
to justify their responses in some way.

• Technology Exercises Exercises that require technology have also been grouped. To
avoid burdening the student with keyboarding, the relevant data files have been posted
on the websites that accompany this text.

• Supplementary Exercises Each of the first nine chapters ends with a set of supplemen-
tary exercises that draw on all topics in the chapter. These tend to be more challenging.

Supplementary Materials
for Students

• Student Solutions Manual This supplement provides detailed solutions to most odd-
numbered exercises (ISBN 978-1-118-464427).

• Data Files Data files for the technology exercises are posted on the companion websites
that accompany this text.

• MATLAB Manual and Linear Algebra Labs This supplement contains a set of MATLAB

laboratory projects written by Dan Seth of West Texas A&M University. It is designed
to help students learn key linear algebra concepts by using MATLAB and is available in
PDF form without charge to students at schools adopting the 11th edition of the text.

• Videos A complete set of Daniel Solow’sHow toRead andDoProofs videos is available
to students through WileyPLUS as well as the companion websites that accompany
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this text. Those materials include a guide to help students locate the lecture videos
appropriate for specific proofs in the text.

Supplementary Materials
for Instructors

• Instructor’s Solutions Manual This supplement provides worked-out solutions to most
exercises in the text (ISBN 978-1-118-434482).

• PowerPoint Presentations PowerPoint slides are provided that display important def-
initions, examples, graphics, and theorems in the book. These can also be distributed
to students as review materials or to simplify note taking.

• Test Bank Test questions and sample exams are available in PDF or LATEX form.
• WileyPLUS An online environment for effective teaching and learning. WileyPLUS

builds student confidence by taking the guesswork out of studying and by providing a
clear roadmap of what to do, how to do it, and whether it was done right. Its purpose is
to motivate and foster initiative so instructors can have a greater impact on classroom
achievement and beyond.

A Guide for the Instructor Although linear algebra courses vary widely in content and philosophy, most courses
fall into two categories—those with about 40 lectures and those with about 30 lectures.
Accordingly, we have created long and short templates as possible starting points for
constructing a course outline. Of course, these are just guides, and you will certainly
want to customize them to fit your local interests and requirements. Neither of these
sample templates includes applications or the numerical methods in Chapter 9. Those
can be added, if desired, and as time permits.

Long Template Short Template

Chapter 1: Systems of Linear Equations and Matrices 8 lectures 6 lectures

Chapter 2: Determinants 3 lectures 2 lectures

Chapter 3: Euclidean Vector Spaces 4 lectures 3 lectures

Chapter 4: General Vector Spaces 10 lectures 9 lectures

Chapter 5: Eigenvalues and Eigenvectors 3 lectures 3 lectures

Chapter 6: Inner Product Spaces 3 lectures 1 lecture

Chapter 7: Diagonalization and Quadratic Forms 4 lectures 3 lectures

Chapter 8: General Linear Transformations 4 lectures 3 lectures

Total: 39 lectures 30 lectures

Reviewers The following people reviewed the plans for this edition, critiqued much of the content,
and provided me with insightful pedagogical advice:

John Alongi, Northwestern University
Jiu Ding, University of Southern Mississippi
Eugene Don, City University of New York at Queens
John Gilbert, University of Texas Austin
Danrun Huang, St. Cloud State University
Craig Jensen, University of New Orleans
Steve Kahan, City University of New York at Queens
Harihar Khanal, Embry-Riddle Aeronautical University
Firooz Khosraviyani, Texas A&M International University
Y. George Lai, Wilfred Laurier University
Kouok Law, Georgia Perimeter College
Mark MacLean, Seattle University
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Vasileios Maroulas, University of Tennessee, Knoxville
Daniel Reynolds, Southern Methodist University
Qin Sheng, Baylor University
Laura Smithies, Kent State University
Larry Susanka, Bellevue College
Cristina Tone, University of Louisville
Yvonne Yaz, Milwaukee School of Engineering
Ruhan Zhao, State University of New York at Brockport

Exercise Contributions Special thanks are due to three talented people who worked on various aspects of the
exercises:

Przemyslaw Bogacki, Old Dominion University – who solved the exercises and created
the solutions manuals.

Roger Lipsett, Brandeis University – who proofread the manuscript and exercise solu-
tions for mathematical accuracy.

Daniel Solow,CaseWesternReserveUniversity – author of “How toRead andDoProofs,”
for providing videos on techniques of proof and a key to using those videos in coordi-
nation with this text.

Sky Pelletier Waterpeace – who critiqued the technology exercises, suggested improve-
ments, and provided the data sets.

Special Contributions I would also like to express my deep appreciation to the following people with whom I
worked on a daily basis:

Anton Kaul – who worked closely with me at every stage of the project and helped to write
some new text material and exercises. On the many occasions that I needed mathematical
or pedagogical advice, he was the person I turned to. I cannot thank him enough for his
guidance and the many contributions he has made to this edition.

David Dietz – my editor, for his patience, sound judgment, and dedication to producing
a quality book.

Anne Scanlan-Rohrer – of Two Ravens Editorial, who coordinated the entire project and
brought all of the pieces together.

Jacqueline Sinacori – who managed many aspects of the content and was always there
to answer my often obscure questions.

Carol Sawyer – ofThePerfectProof, who managed the myriad of details in the production
process and helped with proofreading.

Maddy Lesure – with whom I have worked for many years and whose elegant sense of
design is apparent in the pages of this book.

Lilian Brady – my copy editor for almost 25 years. I feel fortunate to have been the ben-
eficiary of her remarkable knowledge of typography, style, grammar, and mathematics.

Pat Anton – of Anton Textbooks, Inc., who helped with the mundane chores duplicating,
shipping, accuracy checking, and tasks too numerous to mention.

John Rogosich – of Techsetters, Inc., who programmed the design, managed the compo-
sition, and resolved many difficult technical issues.

Brian Haughwout – of Techsetters, Inc., for his careful and accurate work on the illustra-
tions.

Josh Elkan – for providing valuable assistance in accuracy checking.

Howard Anton
Chris Rorres
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C H A P T E R 1

Systems of Linear
Equations and Matrices

CHAPTER CONTENTS 1.1 Introduction to Systems of Linear Equations 2

1.2 Gaussian Elimination 11

1.3 Matrices and Matrix Operations 25

1.4 Inverses; Algebraic Properties of Matrices 39

1.5 Elementary Matrices and a Method for Finding A−1 52
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1.7 Diagonal,Triangular, and Symmetric Matrices 67

1.8 MatrixTransformations 75

1.9 Applications of Linear Systems 84

• Network Analysis (Traffic Flow) 84

• Electrical Circuits 86

• Balancing Chemical Equations 88

• Polynomial Interpolation 91

1.10 Leontief Input-Output Models 96

INTRODUCTION Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices
often appear as tables of numerical data that arise from physical observations, but they
occur in various mathematical contexts as well. For example, we will see in this chapter
that all of the information required to solve a system of equations such as

5x + y = 3

2x − y = 4

is embodied in the matrix �
5

2

1

−1

3

4

�
and that the solution of the system can be obtained by performing appropriate
operations on this matrix. This is particularly important in developing computer
programs for solving systems of equations because computers are well suited for
manipulating arrays of numerical information. However, matrices are not simply a
notational tool for solving systems of equations; they can be viewed as mathematical
objects in their own right, and there is a rich and important theory associated with
them that has a multitude of practical applications. It is the study of matrices and
related topics that forms the mathematical field that we call “linear algebra.” In this
chapter we will begin our study of matrices.
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1.1 Introduction to Systems of Linear Equations
Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology and
discuss a method for solving such systems.

Linear Equations Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)

and in three dimensions a plane in a rectangular xyz-coordinate system can be repre-
sented by an equation of the form

ax + by + cz = d (a, b, c not all 0)

These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + · · · + anxn = b (1)

where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, we will often use variables without subscripts and write linear
equations as

a1x + a2y = b (a1, a2 not both 0) (2)

a1x + a2y + a3z = b (a1, a2, a3 not all 0) (3)

In the special case where b = 0, Equation (1) has the form

a1x1 + a2x2 + · · · + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All
variables occur only to the first power and do not appear, for example, as arguments of
trigonometric, logarithmic, or exponential functions. The following are linear equations:

x + 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x − y + 3z = −1 x1 + x2 + · · · + xn = 1

The following are not linear equations:

x + 3y2 = 4 3x + 2y − xy = 5

sin x + y = 0
√

x1 + 2x2 + x3 = 1

A finite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4

(5–6)
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A general linear system of m equations in the n unknowns x1, x2, . . . , xn can be written
The double subscripting on
the coefficients aij of the un-
knowns gives their location
in the system—the first sub-
script indicates the equation
in which the coefficient occurs,
and the second indicates which
unknown it multiplies. Thus,
a12 is in the first equation and
multiplies x2.

as
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn

makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1,−2) and (1, 2,−1)

in which the names of the variables are omitted. This notation allows us to interpret
these solutions geometrically as points in two-dimensional and three-dimensional space.
More generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn

of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems inTwo and
Three Unknowns

Linear systems in two unknowns arise in connection with intersections of lines. For
example, consider the linear system

a1x + b1y = c1

a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.

In general, we say that a linear system is consistent if it has at least one solution and
inconsistent if it has no solutions. Thus, a consistent linear systemof two equations in
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Figure 1.1.1

x

y

No solution

x

y

One solution

x

y

Infnitely many

solutions

(coincident lines)

two unknowns has either one solution or infinitely many solutions—there are no other
possibilities. The same is true for a linear system of three equations in three unknowns

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any,
correspond to points where all three planes intersect, so again we see that there are only
three possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions

(three parallel planes;

no common intersection)

No solutions

(two parallel planes;

no common intersection)

No solutions

(no common intersection)

Infnitely many solutions

(planes are all coincident;

intersection is a plane)

Infnitely many solutions

(intersection is a line)

One solution

(intersection is a point)

No solutions

(two coincident planes

parallel to the third;

no common intersection)

Infnitely many solutions

(two coincident planes;

intersection is a line)

Figure 1.1.2

We will prove later that our observations about the number of solutions of linear
systems of two equations in two unknowns and linear systems of three equations in
three unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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EXAMPLE 2 A Linear System with One Solution

Solve the linear system
x − y = 1

2x + y = 6

Solution We can eliminate x from the second equation by adding −2 times the first
equation to the second. This yields the simplified system

x − y = 1

3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first

equation we obtain x = 1 + y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system
intersect at the single point

�
7
3 , 4

3

�
. We leave it for you to check this by graphing the

lines.

EXAMPLE 3 A Linear System with No Solutions

Solve the linear system
x + y = 4

3x + 3y = 6

Solution We can eliminate x from the second equation by adding −3 times the first
equation to the second equation. This yields the simplified system

x + y = 4

0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that
they have the same slope but different y-intercepts.

EXAMPLE 4 A Linear System with Infinitely Many Solutions

Solve the linear system
4x − 2y = 1

16x − 8y = 4

Solution We can eliminate x from the second equation by adding −4 times the first
equation to the second. This yields the simplified system

4x − 2y = 1

0 = 0

The second equation does not impose any restrictions on x and y and hence can be
omitted. Thus, the solutions of the system are those values of x and y that satisfy the
single equation

4x − 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original
system coincide. One way to describe the solution set is to solve this equation for x in
terms of y to obtain x = 1

4 + 1
2 y and then assign an arbitrary value t (called a parameter)
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to y. This allows us to express the solution by the pair of equations (called parametric
equations)

x = 1
4 + 1

2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numer-

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x = t be
the parameter. The resulting
parametric equations would
look different but would
define the same solution set.

ical values for the parameter t . For example, t = 0 yields the solution
�

1
4 , 0

�
, t = 1

yields the solution
�

3
4 , 1

�
, and t = −1 yields the solution

�− 1
4 ,−1

�
. You can confirm

that these are solutions by substituting their coordinates into the given equations.

EXAMPLE 5 A Linear System with Infinitely Many Solutions

Solve the linear system
x − y + 2z = 5

2x − 2y + 4z = 10

3x − 3y + 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and
that those values of x, y, and z that satisfy the equation

x − y + 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9).
We can do this by first solving this equation for x in terms of y and z, then assigning
arbitrary values r and s (parameters) to these two variables, and then expressing the
solution by the three parametric equations

x = 5 + r − 2s, y = r, z = s

Specific solutions can be obtained by choosing numerical values for the parameters r

and s. For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and
Elementary Row Operations

As the number of equations and unknowns in a linear system increases, so does the
complexity of the algebra involved in finding solutions. The required computations can
be made more manageable by simplifying notation and standardizing procedures. For
example, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the
linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦

This is called the augmented matrix for the system. For example, the augmented matrix

As noted in the introduction
to this chapter, the term “ma-
trix” is used in mathematics to
denote a rectangular array of
numbers. In a later section
we will study matrices in de-
tail, but for now we will only
be concerned with augmented
matrices for linear systems.

for the system of equations

x1 + x2 + 2x3 = 9

2x1 + 4x2 − 3x3 = 1

3x1 + 6x2 − 5x3 = 0

is

⎡
⎢⎣1 1 2 9

2 4 −3 1

3 6 −5 0

⎤
⎥⎦
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The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.

2. Interchange two rows.

3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations and

an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply
to understand the computations.

EXAMPLE 6 Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in
the system, and in the right column we solve the same system by operating on the rows
of the augmented matrix.

x + y + 2z = 9

2x + 4y − 3z = 1

3x + 6y − 5z = 0

⎡
⎢⎣1 1 2 9

2 4 −3 1

3 6 −5 0

⎤
⎥⎦

Add −2 times the first equation to the second
to obtain

x + y + 2z = 9

2y − 7z = −17

3x + 6y − 5z = 0

Add −2 times the first row to the second to
obtain ⎡

⎢⎣1 1 2 9

0 2 −7 −17

3 6 −5 0

⎤
⎥⎦

Maxime Bôcher
(1867–1918)

Historical Note The first known use of augmented matrices appeared
between 200 B.C. and 100 B.C. in a Chinese manuscript entitled Nine
Chapters of Mathematical Art. The coefficients were arranged in
columns rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns. The
actual use of the term augmented matrix appears to have been intro-
duced by the American mathematician Maxime Bôcher in his book In-
troduction to HigherAlgebra, published in 1907. In addition to being an
outstanding research mathematician and an expert in Latin, chemistry,
philosophy, zoology, geography, meteorology, art, and music, Bôcher
was an outstanding expositor of mathematics whose elementary text-
books were greatly appreciated by students and are still in demand
today.

[Image: Courtesy of the American Mathematical Society
www.ams.org]
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Add −3 times the first equation to the third to
obtain

x + y + 2z = 9

2y − 7z = −17

3y − 11z = −27

Add−3 times the first row to the third to obtain

⎡
⎢⎣1 1 2 9

0 2 −7 −17

0 3 −11 −27

⎤
⎥⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

3y − 11z = −27

Multiply the second row by 1
2 to obtain⎡

⎢⎣1 1 2 9

0 1 − 7
2 − 17

2

0 3 −11 −27

⎤
⎥⎦

Add −3 times the second equation to the third
to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

− 1
2z = − 3

2

Add −3 times the second row to the third to
obtain ⎡

⎢⎢⎣
1 1 2 9

0 1 − 7
2 − 17

2

0 0 − 1
2 − 3

2

⎤
⎥⎥⎦

Multiply the third equation by −2 to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

z = 3

Multiply the third row by −2 to obtain⎡
⎢⎣1 1 2 9

0 1 − 7
2 − 17

2

0 0 1 3

⎤
⎥⎦

Add −1 times the second equation to the first
to obtain

x + 11
2 z = 35

2

y − 7
2z = − 17

2

z = 3

Add −1 times the second row to the first to
obtain ⎡

⎢⎢⎣
1 0 11

2
35
2

0 1 − 7
2 − 17

2

0 0 1 3

⎤
⎥⎥⎦

Add −11
2 times the third equation to the first

and 7
2 times the third equation to the second to

obtain
x = 1

y = 2

z = 3

Add − 11
2 times the third row to the first and 7

2

times the third row to the second to obtain⎡
⎢⎣1 0 0 1

0 1 0 2

0 0 1 3

⎤
⎥⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as the or-
dered triple (1, 2, 3) with the
understanding that the num-
bers in the triple are in the
same order as the variables in
the system, namely, x, y, z.

Exercise Set 1.1
1. In each part, determine whether the equation is linear in x1,

x2, and x3.

(a) x1 + 5x2 − √
2 x3 = 1 (b) x1 + 3x2 + x1x3 = 2

(c) x1 = −7x2 + 3x3 (d) x−2
1 + x2 + 8x3 = 5

(e) x
3/5
1 − 2x2 + x3 = 4 (f ) πx1 −

√
2 x2 = 71/3

2. In each part, determine whether the equation is linear in x

and y.

(a) 21/3x +√
3y = 1 (b) 2x1/3 + 3

√
y = 1

(c) cos
�

π

7

�
x − 4y = log 3 (d) π

7 cos x − 4y = 0

(e) xy = 1 (f ) y + 7 = x
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3. Using the notation of Formula (7), write down a general linear
system of

(a) two equations in two unknowns.

(b) three equations in three unknowns.

(c) two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a linear system in the un-
knowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. (a)

⎡
⎢⎣2 0 0

3 −4 0

0 1 1

⎤
⎥⎦ (b)

⎡
⎢⎣3 0 −2 5

7 1 4 −3

0 −2 1 7

⎤
⎥⎦

6. (a)

�
0 3 −1 −1 −1

5 2 0 −3 −6

�

(b)

⎡
⎢⎢⎢⎣

3 0 1 −4 3

−4 0 4 1 −3

−1 3 0 −2 −9

0 0 0 −1 −2

⎤
⎥⎥⎥⎦

In each part of Exercises 7–8, find the augmented matrix for
the linear system.

7. (a) −2x1 = 6
3x1 = 8
9x1 = −3

(b) 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

(c) 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1

6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. (a) 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

(b) 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

(c) x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1

3x1 − 5x2 − 3x3 = 1

(a) (3, 1, 1) (b) (3,−1, 1) (c) (13, 5, 2)

(d)
�

13
2 , 5

2 , 2
�

(e) (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

(a)
�

5
7 ,

8
7 , 1

�
(b)

�
5
7 ,

8
7 , 0

�
(c) (5, 8, 1)

(d)
�

5
7 ,

10
7 , 2

7

�
(e)

�
5
7 ,

22
7 , 2

�
11. In each part, solve the linear system, if possible, and use the

result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

(a) 3x − 2y = 4
6x − 4y = 9

(b) 2x − 4y = 1
4x − 8y = 2

(c) x − 2y = 0
x − 4y = 8

12. Under what conditions on a and b will the following linear
system have no solutions, one solution, infinitely many solu-
tions?

2x − 3y = a

4x − 6y = b

In each part of Exercises 13–14, use parametric equations to
describe the solution set of the linear equation.

13. (a) 7x − 5y = 3

(b) 3x1 − 5x2 + 4x3 = 7

(c) −8x1 + 2x2 − 5x3 + 6x4 = 1

(d) 3v − 8w + 2x − y + 4z = 0

14. (a) x + 10y = 2

(b) x1 + 3x2 − 12x3 = 3

(c) 4x1 + 2x2 + 3x3 + x4 = 20

(d) v + w + x − 5y + 7z = 0

In Exercises 15–16, each linear system has infinitely many so-
lutions. Use parametric equations to describe its solution set.

15. (a) 2x − 3y = 1
6x − 9y = 3

(b) x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. (a) 6x1 + 2x2 = −8
3x1 + x2 = −4

(b) 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that
will create a 1 in the upper left corner of the given augmented ma-
trix and will not create any fractions in its first row.

17. (a)

⎡
⎣−3 −1 2 4

2 −3 3 2
0 2 −3 1

⎤
⎦ (b)

⎡
⎣0 −1 −5 0

2 −9 3 2
1 4 −3 3

⎤
⎦

18. (a)

⎡
⎣ 2 4 −6 8

7 1 4 3
−5 4 2 7

⎤
⎦ (b)

⎡
⎣ 7 −4 −2 2

3 −1 8 1
−6 3 −1 4

⎤
⎦




